Power Systems Contingency Analysis using Artificial Neural Networks

نویسندگان

  • Dimitrios Semitekos
  • Nikolaos Avouris
چکیده

Contingency analysis and risk assessment are important tasks for the safe operation of electrical energy networks. During the steady state study of an electrical network any one of the possible contingencies can have either no effect, or serious effect, or even fatal results for the network safety, depending on a given network operating state. Load flow analysis can be used as a crisp technique for contingency risk assessment. However performing at run time the necessary load flow analysis studies is a tedious and time consuming operation. An alternative solution is the off-line training and the run-time application of artificial neural networks. This article aims at describing how artificial neural networks can be used to bypass the traditional load flow cycle, resulting in significantly faster computation times for online contingency analysis. A discussion over the efficiency of the proposed techniques is also included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)

Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...

متن کامل

Online Power System Contingency Screening and Ranking Methods Using Radial Basis Neural Networks

This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN) and Radial Basis Fuction Neural Network(RBFN) to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs): Voltage-reactive power performa...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002